Study on Neutronics and Thermalhydraulics Characteristics of 1200-MWel Pressure-Channel Supercritical Water-Cooled Reactor

Author:

Miletic Marija1,Peiman Wargha2,Farah Amjad3,Samuel Jeffrey3,Dragunov Alexey3,Pioro Igor3

Affiliation:

1. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic e-mail:

2. Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Oshawa, Ontario L1H 7K4, Canada e-mail:

3. Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Oshawa, Ontario L1H 7K4, Canada e-mail:

Abstract

Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical energy generation. The largest group of operating nuclear power plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) has gross thermal efficiencies ranging from 30–36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8  MPa/257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fueled by natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., supercritical water-cooled reactors (SCWRs) have to be designed. This path of increasing thermal efficiency is considered as a conventional way that coal-fired power plants followed more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel pressure-channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulics code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the computational fluid dynamics (CFD) Fluent code has been used for better understanding of the specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical water loop and developing passive safety systems.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3