An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets With Surface Ribs

Author:

Spring Sebastian1,Xing Yunfei2,Weigand Bernhard1

Affiliation:

1. Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, Stuttgart 70569, Germany

2. Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

A combined experimental and numerical investigation of the heat transfer characteristics within arrays of impinging jets with rib-roughened surfaces is presented. Two configurations are considered: One with an inline arrangement of jets and ribs oriented perpendicular to the direction of cross-flow and one with a staggered arrangement of jets and broken ribs aligned with the direction of cross-flow. For both cases, the jet Reynolds number is 35,000, the separation distance measures H/D = 3, the spent air is routed through one exit contributing to the maximum cross-flow condition, and the rib height and width is both 1 D. The experiments are carried out in perspex models using the transient liquid crystal method. Local jet temperatures are measured at several positions on the impingement plate to account for an exact evaluation of the heat transfer coefficient. In addition to the measurements, a numerical analysis using the commercial CFD software package ANSYSCFX is conducted. Heat transfer predictions are compared with those obtained from experiments with regards to local distributions as well as averaged quantities. A good overall agreement is found but discrepancies for local values need to be accepted. The present investigation also emphasizes that configurations including rib roughness elements should be compared based on the amount of transferred heat flux in order to account for the area enlarging effect. This allows a correct evaluation of the thermal performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3