Research on the Hydroelastic Response of Ice Floes and Wave Scattering Field

Author:

Zhang Xi1,Li Tingqiu1,Liu Zuyuan1

Affiliation:

1. Wuhan University of Technology School of Naval Architecture, Ocean and Energy Power Engineering, Key Laboratory of High, Performance Ship Technology, , Wuhan 430063 , China

Abstract

Abstract The marginal ice zone (MIZ) is the area between sea ice and open water, the structure of which is mainly determined by wave and ice interactions. Thus mastering the characteristics of MIZ is of great significance to the Arctic routes opening and the natural resources development. In this paper, the hydroelastic response of ice floes in waves is studied, a three-dimensional numerical wave tank is established based on the computational fluid dynamics technology. The finite volume method and finite element method are respectively utilized for the discrete fluid domain and ice domain. A mapping interface at the junction of the fluid and ice floes domains is created to perform data mapping by the shape function interpolation method and the least square method. This work presents a series of numerical simulations to study the fluid–solid interaction of waves and ice floes. Under the given incident wave parameters, the vertical bending deformation of ice floes with different shapes under the excitation of waves, the effect of ice floes' deformation on the wave field are studied, and the effect of wave overwash on the transmitted wave field is emphasized. Results show that the shape of the ice floes significantly affects its elastic deformation and scattered wave field, and the wave overwash phenomenon attenuates the scattering wave.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3