Performance Portable Graphics Processing Unit Acceleration of a High-Order Finite Element Multiphysics Application

Author:

Stitt Thomas1,Belcher Kristi12,Campos Alejandro12,Kolev Tzanio12,Mocz Philip12,Rieben Robert N.12,Skinner Aaron12,Tomov Vladimir12,Vargas Arturo12,Weiss Kenneth12

Affiliation:

1. Lawrence Livermore National Laboratory , 7000 East Ave., Livermore, CA 94550

2. Lawrence Livermore National Laboratory

Abstract

Abstract The Lawrence Livermore National Laboratory (LLNL) will soon have in place the El Capitan exascale supercomputer, based on advanced micro devices (AMD) graphics processing units (GPUs). As part of a multiyear effort under the National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program, we have been developing marbl, a next generation, performance portable multiphysics application based on high-order finite elements. In previous years, we successfully ported the Arbitrary Lagrangian–Eulerian (ALE), multimaterial, compressible flow capabilities of marbl to nvidia GPUs as described in Vargas et al. (2022, “Matrix-Free Approaches for GPU Acceleration of a High-Order Finite Element Hydrodynamics Application Using MFEM, Umpire, and RAJA,” Int. J. High Perform. Comput. Appl., 36(4), pp. 492–509). In this paper, we describe our ongoing effort in extending marbl's GPU capabilities with additional physics, including multigroup radiation diffusion and thermonuclear burn for high energy density physics (HEDP) and fusion modeling. We also describe how our portability abstraction approach based on the raja Portability Suite and the mfem finite element discretization library has enabled us to achieve high performance on AMD based GPUs with minimal effort in hardware-specific porting. Throughout this work, we highlight numerical and algorithmic developments that were required to achieve GPU performance.

Publisher

ASME International

Reference43 articles.

1. Matrix-Free Approaches for GPU Acceleration of a High-Order Finite Element Hydrodynamics Application Using MFEM, Umpire, and RAJA;Int. J. High Perform. Comput. Appl.,2022

2. The RAGE Radiation-Hydrodynamic Code;Comput. Sci. Discov.,2008

3. Extensible Component-Based Architecture for FLASH, a Massively Parallel, Multiphysics Simulation Code;Parallel Comput.,2009

4. CRASH: A Block-Adaptive-Mesh Code for Radiative Shock Hydrodynamics – Implementation and Verification;Astrophys. J.,2011

5. HYADES – a Plasma Hydrodynamics Code for Dense Plasma Studies;J. Quant. Spectrosc. Radiat. Transfer,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAGMA: Enabling exascale performance with accelerated BLAS and LAPACK for diverse GPU architectures;The International Journal of High Performance Computing Applications;2024-06-20

2. High-performance finite elements with MFEM;The International Journal of High Performance Computing Applications;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3