Alternative Designs for Passive Cooling of Homes for Venezuela

Author:

Almao de Herrera Nastia1,Rincon Jose1

Affiliation:

1. Energy Department, Mechanical Engineering School, University of Zulia, Maracaibo, Venezuela

Abstract

A two-dimensional model has been applied to predict the indoor temperature fluctuations of a building using a finite difference technique based on the control volume approach and the “SIMPLE” algorithm. The model simulates thermal performance of a rectangular section where inside air motion by free convection and unsteady heat conduction through walls and roof, are allowed. Since it is a two-dimensional model and only the thermal load through external surfaces is considered, numerical results allow one first to study qualitative performance of a rectangular building section and, secondly, to make quantitative comparisons among alternative designs. In order to show the usefulness of the model, eight design cases were simulated under the transient climatic conditions of Maracaibo (latitude = 10° 30′; longitude = 71° 36′), a hot and humid region in Venezuela. Numerical results show how thermal load through external surfaces can be reduced 60 percent and over in relation to the highest thermal load case.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3