Dynamics of Spindle-Bearing Systems at High Speeds Including Cutting Load Effects

Author:

Jorgensen Bert R.1,Shin Yung C.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Increased use of high speed machining creates the need to predict spindle-bearing performance at high speeds. Previous spindle-bearing models simplify either spindle or bearing dynamics to the extent of prohibiting a detailed analysis of a spindle with high speed motion. At high speeds, centrifugal loading in the bearing causes stiffness softening, creating a change in natural frequency. Therefore, spindle modeling requires a comprehensive representation of the dynamics of shafts with complex geometry rotating at high speeds and supported by non-linear bearings. This paper presents a coupled system of spindle and bearing dynamic models with numerical solution. Spindle dynamics are modeled using the influence coefficient method of discrete lumped masses, based on Timoshenko beam theory. Both linear and rotational bearing stiffness are included in the spindle model through solution of the angular-contact bearing model. The parameters of cutting loads, tool mass, and rotational speed are analyzed, and all are shown to affect the natural frequency. The computer model is both rapid and robust, and shows excellent agreement with experimental analysis.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3