Drag-Reducing Flows in Laminar-Turbulent Transition Region

Author:

Yang Shu-Qing1,Ding Donghong1

Affiliation:

1. School of Civil, Mining and Environmental Engineering, Faculty of Engineering and Information Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia

Abstract

This study makes an attempt to investigate Newtonian/non-Newtonian pipe flows in a laminar-turbulent transition region, which is an extraordinarily complicated process and is not fully understood. The key characteristic of this region is its intermittent nature, i.e., the flow alternates in time between being laminar or turbulent in a certain range of Reynolds numbers. The physical nature of this intermittent flow can be aptly described with the aid of the intermittency factor γ, which is defined as that fraction of time during which the flow at a given position remains turbulent. Spriggs postulated that a weighting factor can be used to calculate the friction factor, applying its values in laminar and turbulent states. Based on these, a model is developed to empirically express the mean velocity and Reynolds shear stress in the transition region. It is found that the intermittency factor can be used as a weighting factor for calculating the flow structures in the transition region. Good agreements can be achieved between the calculations and experimental data available in the literature, indicating that the present model is acceptable to express the flow characteristics in the transition region.

Publisher

ASME International

Subject

Mechanical Engineering

Reference49 articles.

1. An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels;Proc. R. Soc. London,1883

2. On Transition in a Pipe. Part 1. The Origin of Puffs and Slugs and the Flow in a Turbulent Slug;J. Fluid Mech.,1973

3. On Transition in a Pipe. Part 2. The Equilibrium Puff;J. Fluid Mech.,1975

4. Transition to Turbulence in Constant-Mass-Flux Pipe Flow;J. Fluid Mech.,1995

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3