Demonstration of the Intelligent Mooring System for Floating Offshore Wind Turbines

Author:

Harrold Magnus J.1,Thies Philipp R.1,Halswell Peter1,Johanning Lars1,Newsam David2,Bittencourt Ferreira Claudio3

Affiliation:

1. University of Exeter, Penryn, UK

2. Teqniqa Systems Ltd., London, UK

3. DNV GL, London, UK

Abstract

Abstract Existing mooring systems for floating offshore wind turbines are largely based on designs from the oil and gas industry. Even though these can ensure the safe station keeping of the floating wind platform, the design of the mooring system is currently largely conservative, leading to additional expense in an industry striving to achieve cost reduction. Recent interest in the usage of mooring materials with non-linear stiffness has shown that they have the potential to reduce peak line loads, ultimately reducing cost. This paper reports on the combined physical testing and numerical modeling of a hydraulic-based mooring component with these characteristics. The results suggest that the inclusion of the component as part of the OC4 semi-submersible platform can reduce the peak line loads by 10%. The paper also discusses a number of challenges associated with modeling and testing dynamic mooring materials.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3