Measurements of and Relation Between the Adhesion and Friction of Two Surfaces Separated by Molecularly Thin Liquid Films

Author:

Homola A. M.1,Israelachvili J. N.2,Gee M. L.2,McGuiggan P. M.2

Affiliation:

1. Almaden Research Center, IBM Corporation, San Jose, CA 95120-6099

2. Department of Chemical & Nuclear Engineering, and Materials Department, University of California, Santa Barbara, CA 93106

Abstract

A new technique is described for sliding (shearing) two molecularly smooth surfaces laterally past each other in liquids while monitoring their exact contact area, the normal and transverse forces, and the surface separation. First, we show that the elastic deformations of two initially curved surfaces in adhesive contact are the same under static and dynamic (i.e., sliding) conditions. Detailed results are then presented of how the shear properties of thin films of water and a simple nonpolar liquid are “quantized” with the number of layers. Results with water as the intervening liquid, as well as the effects of humidity on sliding in air, reveal that more complex mechanisms are operating than with simple liquids which appear to be related to the complex “hydration” forces between two surfaces in water or in aqueous salt solutions. The results suggest a close correlation between the static forces and shear properties of very thin liquid films, and the molecular structure of the liquids confined within such films.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 306 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3