Solid Third Body Analysis Using a Discrete Approach: Influence of Adhesion and Particle Size on Macroscopic Properties

Author:

Iordanoff I.1,Seve B.1,Berthier Y.1

Affiliation:

1. Laboratoire de Me´canique des Contacts UMR, INSA-CNRS 5514, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex, France

Abstract

The dynamics of solid third bodies sheared between two rubbing bodies is far from being understood. Yet, this interface plays a prominent role in the velocity accommodation and in the load transmission. In the present paper, a simple model, which uses the Distinct Element Method, is operated in order to understand phenomena occurring in dry contact. In this model, the solid third body is considered as an aggregate of discrete interacting particles. Inter-particle forces are determined by force-displacement law and trajectories are calculated using the Newton’s second law. The global behavior of the simulated contact can be analyzed through the evolution versus time of characteristic parameters calculated by averaging over all the particles. The model is used to study the effect of particle size and inter-particle forces. The influence of particle size is studied in presence of repulsive force (based on Hertz contact model), and in presence of adhesive force (based on JKR contact model). Some promising results are highlighted. In particular, with the boundary conditions chosen in this paper, it is shown that the particle size has a weak influence when inter-particle forces are repulsive but has a dramatic influence when inter-particle adhesion is considered: solid third body goes from a quasi-fluid to a quasi-solid behavior.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3