Fission-Product Behaviour During Irradiation of TRISO-Coated Particles in the HFREU1bis Experiment

Author:

de Groot Sander1,Dubourg Roland2,Bakker Klaas1,Kissane Martin2,Barrachin Marc2

Affiliation:

1. Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands

2. Institut de Radioprotection et de Suˆrete´ Nucle´aire, Saint Paul lez Durance, France

Abstract

The irradiation experiment HFR-EU1bis, coordinated by the European Joint Research Centre – Institute for Energy, was performed in the High Flux Reator (HFR) at Petten to test five spherical HTR fuel pebbles of former German production with TRISO coated particles in conditions beyond the specifications of current HTR reactor designs (central temperature of 1250°C). In this paper, the behaviour of the fission products (FPs) and kernel micro-structure evolution during the test are investigated. While FP behaviour is a key issue for potential source term evaluation it also determines the evolution of the oxygen potential in the oxide kernel which in turn is important for formation of carbon oxides (amoeba effect and pressurization). Fission-gas release from the kernel can induce additional mechanical loading and finally some FPs (Ag, Cs, Sr) might alter the mechanical integrity of the coatings. This study is based on postirradiation examinations (ceramography + EPMA) performed both on UO2 kernels and on coatings. Significant evolutions of the kernel as a function of temperature are shown (grain structure, porosity, size of metallic inclusions). The quality of the ceramography results allows characteristics of the intergranular bubbles in the kernel (and estimation of swelling) to be determined. Remarkable results considering FP release from the kernel have been observed and will be presented. Examples are the significant release of Cs out of the kernel as well as Pd, whereas Zr remains trapped. Mo and Ru are mainly incorporated in metallic precipitates. These observations are interpreted and mechanisms for FP and micro-structural evolutions are proposed. These results are coupled to the results of calculations performed with the mechanistic code MFPR (Module for Fission Product Release) and the thermodynamic database MEPHISTA (Multiphase Equilibria in Fuels via Standard Thermodynamic Analysis). The effect of high flux rate and high temperature on fission gas behaviour, grain size evolution and kernel swelling are discussed. In addition, solid-FP behaviour (Cs, Mo, Zr, Ba, Sr) is discussed in connection with the evolution of kernel oxygen potential and evolution of the pressure of carbon oxides. The paper intends to be exemplary on how the combination of post-irradiation examination results and fuel modelling increases fundamentally the understanding of HTR fuel behaviour.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3