HTR Pebble Fuel Burnup Experimental Benchmark

Author:

van Heek Aliki1,Charpin Florence1,van der Marck Steven1,Wolters Jorrit1,Trakas Christos2,Aguiar Luis3,Bomboni Eleonora4,Cerullo Nicola4,Lomonaco Guglielmo4,Freis Daniel5,Frybort Jan6

Affiliation:

1. Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands

2. Areva, Paris, France

3. IRSN, Fontenay-aux-Roses, France

4. University of Pisa, Pisa, Italy

5. JRC ITU, Karlsruhe, Germany

6. NRI, Rez, Czech Republic

Abstract

The HTR pebble fuel experiment HFR EU1bis was irradiated in the High Flux Reactor, Petten, The Netherlands, in 2004 and 2005. It consisted of five fuel pebbles from the German HTR program (GLE4 type, UO2 fuel, 16.75% enrichment) and six minisamples (UO2 fuel, 9.75% enrichment). Its instrumentation included three flux monitor sets. The experiment was loaded in a REFA-170 rig, surrounded by a strongly moderating filler element. The central fuel temperature was held at 1250°C during the irradiation. In the framework of the European RAPHAEL project, Post Irradiation Examination (PIE) has been done at NRG in Petten, The Netherlands and at JRC ITU in Karlsruhe, Germany. In Petten, flux monitor analysis has been done, whereas in Karlsruhe, a quantitative evaluation of γ-emitters was used to make a burn-up determination. A benchmark description based on this experiment has been written by NRG. Until now, five RAPHAEL project participants have modeled the experiment, each with their own neutronics code system. Participating codes are three versions of MONTEBURNS (MCNP with ORIGEN), MURE/MCNP and OCTOPUS (MCNP with FISPACT). The pebble burnup and isotopic inventories (Bq/gram initial HM) of selected fission products and actinides in the fuel pebble samples are both calculated and determined by gamma spectrometry, mass spectrometry and ion chromatography by JRC-ITU. Additionally, two participants calculated the flux monitor activities that were measured by NRG. A burnup measurement of 11.0 % FIMA by gamma spectrometry could be confirmed by calculation. Differences between the various modeling approaches and the experimental burn-up determination will be discussed.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3