Fabrication Process and Product Quality Improvements in Advanced Gas Reactor UCO Kernels

Author:

Barnes Charles M.1,Richardson W. C.2,Husser DeWayne2,Ebner Matthias1

Affiliation:

1. Idaho National Laboratory, Idaho Falls, ID

2. Babcock & Wilcox, Lynchburg, VA

Abstract

A major element of the Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is developing fuel fabrication processes to produce high quality uranium-containing fuel kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test, AGR-1, consisted of uranium oxycarbide (UCO) microspheres that were produced by an internal gelation process followed by high temperature steps to convert the UO3 + C “green” microspheres to UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels in their Lynchburg facility for the AGR-1 irradiation experiment, which went into the Advanced Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process prior and after these kernels were produced led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test, AGR-2. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3