Fluid–Thermal–Structural Analysis of Partial Admission Axial Impulse Turbines With Liquid Jet Impingement Cooling

Author:

Wang Hanwei1,Luo Kai1,Zhi Ruoyang1,Qin Kan1

Affiliation:

1. Northwestern Polytechnical University School of Marine Science and Technology, , Xi’an, Shaanxi 710072 , China

Abstract

Abstract Increasing turbine inlet temperature is beneficial to enhance turbine performance. However, this also results in stringent cooling requirements. Unlike turbines in air cycle machines, the partial admission axial impulse turbines for underwater vehicles can utilize the abundant seawater as the cooling medium. In addition, the short blades cannot accommodate the complex cooling channels used in aero-engines, and the alternative way is jet impingement liquid cooling. This paper proposes a fluid–thermal–structural coupling method to investigate the performance of partial admission axial impulse turbines with water-cooling on the rotating wheel front surface. The volume of fluid multiphase model is employed to study the transient gas–liquid interaction, while the Lee model is chosen to model the heat and mass transfer during phase change. Also, a two-way weakly coupling method among fluid, thermal, and structure is utilized to account for fluid–structure interaction. The results show that the temperature distribution at the turbine wheel drops significantly with the jet impingement liquid cooling. The turbine efficiency is also reduced by 3.38% due to the mixing of cooling medium and gas. From stress analysis, the use of water-cooling can minimize turbine damage and ensure stable turbine operation. This study provides insight into the cooling method for partial admission axial impulse turbines for the underwater vehicle.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3