Affiliation:
1. University of Maryland at College Park, College Park, MD
Abstract
The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in microprocessor chip heat flux and growing concern over the emergence of on-chip “hot spots”. The application of on-chip high heat flux cooling techniques is today a primary driver for innovation in the electronics industry. In this paper, the physical phenomena underpinning the most promising on-chip thermal management approaches for hot spot remediation, along with basic modeling equations and typical results are described. Attention is devoted to thermoelectric microcoolers — using mini-contcat enhancement and in-plane thermoelectric currents, orthotropic TIM’s/heat spreaders, and phase-change microgap coolers.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献