A Data-Fusion Method for Uncertainty Quantification of Mechanical Property of Bi-Modulus Materials: An Example of Graphite

Author:

He Zigang1,Zhang Liang1,Li Shaofan2,Ge Yipeng1,Yan Tao1

Affiliation:

1. Chongqing University College of Aerospace Engineering, , Chongqing 400044 , China

2. University of California at Berkeley Department of Civil and Environmental Engineering, , Berkeley, CA 94720

Abstract

AbstractThe different elastic properties of tension and compression are obvious in many engineering materials, especially new materials. Materials with this characteristic, such as graphite, ceramics, and composite materials, are called bi-modulus materials. Their mechanical properties such as Young’s modulus have randomness in tension and compression due to different porosity, microstructure, etc. To calibrate the mechanical properties of bi-modulus materials by bridging finite element method (FEM) simulation results and scarce experimental data, the paper presents a data-fusion computational method. The FEM simulation is implemented based on parametric variational principle (PVP), while the experimental result is obtained by digital image correlation (DIC) technology. To deal with scarce experimental data, maximum entropy principle (MEP) is employed for the uncertainty quantification (UQ) and calibration of material parameters and responses, which can retain the original probabilistic property of a priori data. The non-parametric p-box is used as a constraint for data fusion. The method presented in this paper can quantify the mechanical properties of materials with high uncertainty, which is verified by a typical example of bi-modulus graphite. It is possible to find applications in the real-time estimation of structural reliability by combining with digital twin technology in the future.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3