Imprinted Glass Fiber-Reinforced Polymer Vascular Networks for Creating Self-Healing Wind Turbine Blades

Author:

Amano Ryoichi S.1,Lewinski Giovanni1,Shen Rulin21

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 115 E. Reindl Way, Glendale, WI 53212

2. College of Mechanical and Electrical Engineering, Central South University, 932 Lushan South Road, Changsha 410083, China;

Abstract

Abstract Self-healing wind turbine blades can reduce costs associated with maintenance, repair, and energy compensation. Self-healing is the ability to sustain and recover from damage autonomously. We discuss the efforts made to optimize the self-healing properties of wind turbine blades and provide a new system to maximize this offset. This system utilizes vacuum-assisted resin transfer molding (VARTM), and 3D printed templates to imprint a vascular network onto a single glass fiber-reinforced polymer (FRP) sheet. This imprinted layer is infused with Grubbs first-generation catalyst and filled with dicyclopentadiene (DCPD) which is then sealed using plastic sheeting. The sealed imprint layer is embedded into a larger multilayer FRP prior to VARTM. After VARTM, the completed multilayer FRP is fully capable of self-healing microcracks. Three-dimensional printed templates with square grid and hexagonal patterns were used to evaluate how differences in DCPD distribution affect overall recovery. Three-point bending tests were performed to obtain the maximum flexural strengths of the FRP samples before and after self-healing to evaluate recovery. Overall, with the imprint layer method, the catalyst was focused in one area of the complete FRP, reducing the amount of unused catalyst present in the FRP. Also, the samples created using the imprint method were able to achieve a maximum average recovery of over 200% and a storage efficiency of 100%.

Funder

NSF

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. Design and Demonstration of Self-Healing Behavior in;Amano,2009

2. Experiment and Computational Analysis of Self-Healing in an Aluminum Alloy;Lucci,2008

3. Self-Healing in an Aluminum Alloy Reinforced With Microtubes;Lucci,2009

4. Self-Healing;Martinez Lucci,2009

5. Self-Healing Technology for Compressor and Turbine Blades;Guntur,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3