Dynamics of a Hyperelastic Gas-Filled Spherical Shell in a Viscous Fluid

Author:

Allen J. S.1,Rashid M. M.2

Affiliation:

1. Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616

2. Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616

Abstract

The dynamical response of a gas-filled, spherical elastic shell immersed in a viscous fluid is of interest in a number of different scientific and technological contexts. In this article, this problem is formulated and studied numerically, within a purely mechanical setting. For spherically symmetric motions, a neo-Hookean shell material, and an incompressible surrounding fluid, the equation of motion can be obtained through an integration in the radial coordinate. The resulting nonlinear initial-value problem must be integrated numerically. An interesting feature of the system response is the possibility of a departure from bounded oscillation for large-amplitude far-field forcing. The amplitude at which this departure occurs is found to be highly dependent on the forcing frequency. A stability map in the forcing frequency/amplitude plane is an important result of this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3