Pseudo-Rigid-Body Dynamic Models for Design of Compliant Members

Author:

Vedant 1,Allison James T.2

Affiliation:

1. Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Aerospace Engineering, Urbana, IL 61801

2. Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Industrial & Enterprise Systems Engineering, Urbana, IL 61801

Abstract

Abstract Movement in compliant mechanisms is achieved, at least in part, via deformable flexible members, rather than using articulating joints. These flexible members are traditionally modeled using finite element analysis (FEA)-based models. In this article, an alternative strategy for modeling compliant cantilever beams is developed with the objectives of reducing computational expense and providing accuracy with respect to design optimization solutions. The method involves approximating the response of a flexible beam with an n-link/m-joint pseudo-rigid-body dynamic model (PRBDM). Traditionally, static pseudo-rigid-body models (PRBMs) have shown an approximation of compliant elements using two or three revolute joints (2R/3R-PRBM). In this study, a more general nR-PRBDM model is developed. The first n resonant frequencies of the PRBDM are matched to exact or FEA solutions to approximate the response of the compliant system and compared with existing PRBMs. PRBDMs can be used for co-design studies of flexible structural members and are capable of modeling large deflections of compliant elements. We demonstrate PRBDMs that show dynamically accurate response for a random geometry cantilever beam by matching the steady-state and frequency response, with dynamical response accuracies up to 10% using a 5R-PRBDM.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3