A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations

Author:

Stow Simon R.1,Dowling Ann P.1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

Lean premixed prevaporized (LPP) combustion can reduce NOx emissions from gas turbines but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance, by perturbing the fuel-air ratio. These heat fluctuations will in turn generate more acoustic waves and in some situations linear oscillations grow into large-amplitude self-sustained oscillations. The resulting limit cycles can cause structural damage. Thermoacoustic oscillations will have a low amplitude initially. Thus linear models can describe the initial growth and hence give stability predictions. An unstable linear mode will grow in amplitude until nonlinear effects become sufficiently important to achieve a limit cycle. While the frequency of the linear mode can often provide a good approximation to that of the resulting limit cycle, linear theories give no prediction of its resulting amplitude. In previous work, we developed a low-order frequency-domain method to model thermoacoustic limit cycles in LPP combustors. This was based on a “describing-function” approach and is only applicable when there is a dominant mode and the main nonlinearity is in the combustion response to flow perturbations. In this paper that method is extended into the time domain. The main advantage of the time-domain approach is that limit-cycle stability, the influence of harmonics, and the interaction between different modes can be simulated. In LPP combustion, fluctuations in the inlet fuel-air ratio have been shown to be the dominant cause of unsteady combustion: These occur because velocity perturbations in the premix ducts cause a time-varying fuel-air ratio, which then convects downstream. If the velocity perturbation becomes comparable to the mean flow, there will be an amplitude-dependent effect on the equivalence ratio fluctuations entering the combustor and hence on the rate of heat release. Since the Mach number is low, the velocity perturbation can be comparable to the mean flow, with even reverse flow occurring, while the disturbances are still acoustically linear in that the pressure perturbation is still much smaller than the mean. Hence while the combustion response to flow velocity and equivalence ratio fluctuations must be modeled nonlinearly, the flow perturbations generated as a result of the unsteady combustion can be treated as linear. In developing a time-domain network model for nonlinear thermoacoustic oscillations an initial frequency-domain calculation is performed. The linear network model, LOTAN, is used to categorize the combustor geometry by finding the transfer function for the response of flow perturbations (at the fuel injectors, say) to heat-release oscillations. This transfer function is then converted into the time domain through an inverse Fourier transform to obtain Green’s function, which thus relates unsteady flow to heat release at previous times. By combining this with a nonlinear flame model (relating heat release to unsteady flow at previous times) a complete time-domain solution can be found by stepping forward in time. If an unstable mode is present, its amplitude will initially grow exponentially (in accordance with linear theory) until saturation effects in the flame model become significant, and eventually a stable limit cycle will be attained. The time-domain approach enables determination of the limit cycle. In addition, the influence of harmonics and the interaction and exchange of energy between different modes can be simulated. These effects are investigated for longitudinal and circumferential instabilities in an example combustor system and the results are compared with frequency-domain limit-cycle predictions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3