Cytoskeleton-Membrane Interactions in Neuronal Growth Cones: A Finite Analysis Study

Author:

Allen Kathleen B.1,Sasoglu F. Mert1,Layton Bradley E.1

Affiliation:

1. Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104

Abstract

Revealing the molecular events of neuronal growth is critical to obtaining a deeper understanding of nervous system development, neural injury response, and neural tissue engineering. Central to this is the need to understand the mechanical interactions between the cytoskeleton and the cell membrane, and how these interactions affect the overall growth mechanics of neurons. Using finite element analysis, the stress in the membrane produced by an actin filament or a microtubule acting against a deformable membrane was modeled, and the deformation, stress, and strain were computed for the membrane. Parameters to represent the flexural rigidities of the well-studied actin and tubulin cytoskeletal proteins, as well as the mechanical properties of cell membranes, were used in the simulations. Our model predicts that a single actin filament is able to produce a normal contact stress on the cell membrane that is sufficient to cause membrane deformation but not growth. Our model also predicts that under clamped boundary conditions a filament with a buckling strength equal to or smaller than an actin filament would not cause the areal strain in the membrane to exceed 3%, and therefore the filament is incapable of causing membrane rupture or puncture to a safety factor of ∼15–25. Decreasing the radius of the membrane upon which the normal contact stress is acting allows an increase in the amount of normal contact stress that the membrane can withstand before rupture. The model predicts that a 50nm radius membrane can withstand ∼4MPa of normal contact stress before membrane rupture whereas a 250nm radius membrane can withstand ∼2.5MPa. Understanding how the mechanical properties of cytoskeletal elements have coevolved with their respective cell membranes may yield insights into the events that gave rise to the sequences and superquaternary structures of the major cytoskeletal proteins. Additionally, numerical modeling of membranes can be used to analyze the forces and stresses generated by nanoscale biological probes during cellular injection.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3