Fibril Microstructure Affects Strain Transmission Within Collagen Extracellular Matrices

Author:

Roeder Blayne A.1,Kokini Klod2,Voytik-Harbin Sherry L.3

Affiliation:

1. Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032; School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088

2. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032

3. Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032; Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, IN 47907-2026

Abstract

The next generation of medical devices and engineered tissues will require development of scaffolds that mimic the structural and functional properties of the extracellular matrix (ECM) component of tissues. Unfortunately, little is known regarding how ECM microstructure participates in the transmission of mechanical load information from a global (tissue or construct) level to a level local to the resident cells ultimately initiating relevant mechanotransduction pathways. In this study, the transmission of mechanical strains at various functional levels was determined for three-dimensional (3D) collagen ECMs that differed in fibril microstructure. Microstructural properties of collagen ECMs (e.g., fibril density, fibril length, and fibril diameter) were systematically varied by altering in vitro polymerization conditions. Multiscale images of the 3D ECM macro- and microstructure were acquired during uniaxial tensile loading. These images provided the basis for quantification and correlation of strains at global and local levels. Results showed that collagen fibril microstructure was a critical determinant of the 3D global and local strain behaviors. Specifically, an increase in collagen fibril density reduced transverse strains in both width and thickness directions at both global and local levels. Similarly, collagen ECMs characterized by increased fibril length and decreased fibril diameter exhibited increased strain in width and thickness directions in response to loading. While extensional strains measured globally were equivalent to applied strains, extensional strains measured locally consistently underpredicted applied strain levels. These studies demonstrate that regulation of collagen fibril microstructure provides a means to control the 3D strain response and strain transfer properties of collagen-based ECMs.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3