Future Trends in Subsonic Transport Energy Efficient Turbofan Engines

Author:

Johnston R. P.1,Ortiz P.1

Affiliation:

1. General Electric Co., Cincinnati, OH

Abstract

Details of the NASA sponsored General Electric Energy Efficient Engine (E3) technology program are presented along with a description of the engine, cycle and aircraft system benefits. Opportunities for further performance improvement beyond E3 are examined. Studies leading to the selection of the E3 cycle and configuration are summarized. The advanced technology features, cycle and component performance levels are also presented. An evaluation of the benefits of the fully developed Flight Propulsion System (FPS) is made relative to the NASA program goals by comparing the FPS with the CF6-50C where both are installed in advanced subsonic transport aircraft. Results indicate that a mission fuel saving from 15 to 23 percent is possible depending on mission length.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NASA-General Electric Energy Efficient Engine high load squeeze filmdamper-system analysis and test results;20th Joint Propulsion Conference;1984-06-11

2. Technology advancements for energy efficient aircraft engines;18th Joint Propulsion Conference;1982-06-21

3. The E3 combustors - Status and challenges;17th Joint Propulsion Conference;1981-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3