Multihull and Surface-Effect Ship Configuration Design: A Framework for Powering Minimization

Author:

Yeung Ronald W.1,Wan Hui1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Abstract The powering issue of a high-speed marine vehicle with multihulls and air-cushion support is addressed, since there is an often need to quickly evaluate the effects of several configuration parameters in the early stage of the design. For component hulls with given geometry, the parameters considered include the relative locations of individual hulls and the relative volumetric ratios. Within the realm of linearized theory, an interference-resistance expression for hull-to-hull interaction is first reviewed, and then a new formula for hull-and-pressure distribution interference is derived. Each of these analytical expressions is expressed in terms of the Fourier signatures or Kochin functions of the interacting component hulls, with the separation, stagger, and speed as explicit parameters. Based on this framework, an example is given for assessing the powering performance of a catamaran (dihull) as opposed to a tetrahull system. Also examined is the wave resistance of a surface-effect ship of varying cushion support in comparison with that of a base line catamaran, subject to the constraint of constant total displacement.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference21 articles.

1. The Wave Resistance of a Ship;Michell;Philos. Mag.

2. Interference-Resistance Prediction and Its Applications to Optimal Multi-Hull Configuration Design;Yeung;SNAME Trans.

3. Study of Michell’s Integral and Influence of Viscosity and Ship Hull Form on Wave Resistance;Gotman;Oceanic Engineering International

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3