Assessment of Wind Energy for Nevada Using Towers and Mesoscale Modeling

Author:

Koracin Darko1,Reinhardt Richard L.1,Liddle Marshall B.1,McCord Travis1,Podnar Domagoj1,Minor Timothy B.1

Affiliation:

1. Desert Research Institute, Reno, NV

Abstract

The main objectives of the study were to support wind energy assessment for all of Nevada by providing two annual cycles of high-resolution mesoscale modeling evaluated by data from surface stations and towers, estimating differences between these annual cycles and standard wind maps, and providing wind and wind power density statistics at elevations relevant to turbine operations. In addition to the 65 existing Remote Automated Weather Stations in Nevada, four 50-m-tall meteorological towers were deployed in western Nevada to capture long-term wind characteristics and provide database input to verify and improve modeling results. The modeling methodology using Mesoscale Model 5 (MM5) was developed to provide wind and wind power density estimates representing mesoscale effects that include actual synoptic forcing during the two annual cycles (horizontal resolution on the order of 2 and 3 km). The results from the two annual simulation cycles show similar wind statistics with an average difference of less than 100 W/m2. The available TrueWind results for the wind power density at 50 m show greater values of wind power density compared to both MM5-simulated annual cycles for most of the area. However, mainly in the Sierras and the mountainous regions of southern and eastern Nevada, the MM5 simulations indicate greater values for wind power density. The results of this study suggest that the synthesis of the data from a network of tower observations and high-resolution mesoscale modeling is a crucial tool for assessing the wind power density in Nevada and, more generally, other topographically developed areas.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3