Energy Optimization of Air-Cooled Data Centers

Author:

Khalifa H. E.12,Demetriou D. W.32

Affiliation:

1. Fellow ASME

2. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244

3. Student Mem. ASME

Abstract

Abstract The work presented in this paper describes a simplified thermodynamic model that can be used for exploring optimization possibilities in air-cooled data centers. The model has been used to identify optimal, energy-efficient designs, operating scenarios, and operating parameters such as flow rates and air supply temperatures. The results of this analysis highlight the important features that need to be considered when optimizing the operation of air-cooled data centers, especially the trade-off between low air supply temperature and increased air flow rate. The model was shown to be especially valuable in defining the optimal operating strategies for enclosed aisle configurations with fixed and variable server flows, and to elucidate the deleterious effect of temperature nonuniformity at the inlet of the racks on the data center cooling infrastructure power consumption. The analysis shows a potential for as much as an ∼58% savings in cooling infrastructure energy consumption by utilizing an optimized enclosed aisle configuration with bypass recirculation, instead of a traditional enclosed aisle, where all the data center exhaust is forced to flow through the computer room air conditioners. The analysis of open-aisle data centers shows that as the temperature at the inlet of the racks becomes more nonuniform, optimal operation tends toward lower recirculation and higher power consumption; again, stressing the importance of providing as uniform a temperature to the racks as possible. It is also revealed that servers with a modest temperature rise (∼10°C) have a wider latitude for cooling infrastructure optimization than those with a high temperature rise (≥20°C), which tend to consume less cooling power when the aisles are enclosed.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. Data Centers’ Energy Auditing and Benchmarking-Progress Update;Salim;ASHRAE Trans.

2. United States Environmental Protection Agency, 2007, “Report to Congress on Data Center Energy Efficiency,” Public Law 109-431.

3. Best Practices for Data Center Thermal and Energy Management—Review of Literature;Schmidt;ASHRAE Trans.

4. Waterside and Airside Economizers Design Considerations for Data Center Facilities;Lui;ASHRAE Trans.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3