Indentation Analysis of Elastic-Plastic Homogeneous and Layered Media: Criteria for Determining the Real Material Hardness

Author:

Ye N.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

A hardness analysis based on finite element simulation results and contact constitutive models is presented for both homogeneous and layered elastic-plastic media. The analysis provides criteria for obtaining the real material hardness from indentation experiments performed with spherical indenters. Emphasis is given on the estimation of the hardness of thin surface layers. The critical (maximum) interference distance that yields an insignificant effect of the substrate deformation on the estimation of the layer hardness is determined from the variation of the equivalent hardness of the layered medium with the interference distance (indentation depth). A relation between hardness, yield strength, and elastic modulus, derived from finite element simulations of a homogeneous half-space indented by a rigid sphere, is used in conjunction with a previously developed contact constitutive model for layered media to determine the minimum interference distance needed to produce sufficient plasticity in order to ensure accurate measurement of the material hardness. An analytical approach for estimating the layer hardness from indentations performed on layered media is presented and its applicability is demonstrated in light of finite element indentation results for an elastic-perfectly plastic layered medium with a hard surface layer.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3