A Vibratory, Subresonant Diagnostic Device to Measure Dental Implant Stability Via Angular Stiffness

Author:

Xu Weiwei1,Wood Darwin S.1,Liu Yifeng1,Shen I. Y.1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600

Abstract

Abstract Stability of a dental implant reflects quality of osseointegration between the implant and its surrounding bone. While many methods have been proposed to characterize implant stability, angular stiffness at the neck of the implant has been proven to be a rigorous and accurate measure. Nevertheless, fast and reliable measurements of the angular stiffness in a clinical environment are not yet available. This article is to demonstrate a novel stability diagnostic device that can measure the angular stiffness accurately in clinical environments. The device consists of a sensing unit, a controller unit, and a mobile app. In the sensing unit, a coupler attaches a buzzer motor and a tiny accelerometer to an abutment of an implant, whose angular stiffness is to be measured. The buzzer vibrates at a frequency below the resonance frequency of the implant–bone–abutment system. Meanwhile, the accelerometer measures the abutment's vibration. The controller unit powers the buzzer, reads the accelerometer data, and transmits the data to the mobile app. The mobile app postprocesses the data and extracts the angular stiffness through use of a finite element model and a nonlinear regression algorithm. The extracted angular stiffness is compared with a calibrated angular stiffness, which is obtained independently via a force hammer and a laser Doppler vibrometer. The comparison shows reasonable agreement, with the difference being in the range of 4–20%.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of a vibration modeling technique for the in-vitro measurement of dental implant stability;Journal of the Mechanical Behavior of Biomedical Materials;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3