A Carbon-Based Ultramicrothermocouple

Author:

Scheibel Olivia V.1,Koz Mustafa2,Scheibel Dieter M.3,Schrlau Michael G.1

Affiliation:

1. Department of Mechanical Engineering, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623

2. Farmington, NY 14425

3. Department of Chemistry, Center for Science and Technology, Syracuse University, 1-014, Syracuse, NY 13244

Abstract

Abstract Micropipette-based thermocouples provide the advantage of a high tip diameter-to-length aspect ratio allowing the maintenance of a reference temperature crucial for accurate thermal sensing in microdomains. The research efforts in this field strive to achieve high thermoelectric power (voltage change per unit temperature change) while minimizing the sensing area, a pair of tasks that is by nature contradictory and thus, challenging. Herein, the design and fabrication of a carbon-based micropipette thermal sensor are described. A novel manufacturing method and set of materials are used to overcome the reduction in thermoelectric performance associated with small sensor sizes. A glass micropipette is utilized as a template in a chemical vapor deposition process to form a carbon layer in the lumen of the pipette. This carbon micropipette then serves as a scaffold on which gold and nickel are deposited, enabling the device to function as a thermocouple. This low-cost fabrication process results in a thermocouple with a sub-500 nm tip. The response of the thermocouple was characterized and demonstrated good repeatability in a temperature range of 0 to 60 °C. The unique material selection provided a thermoelectric power of 14.9 μV·K−1, a significant improvement (68%) relative to other micropipette-based thermocouples.

Funder

Directorate for Education and Human Resources

Directorate for Engineering

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3