An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys

Author:

Zhang M.1,Baxevanis T.1

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX 77204

Abstract

Abstract A 3D finite-strain constitutive model for shape memory alloys (SMAs) is proposed. The model can efficiently describe reversible phase transformation from austenite to self-accommodated and/or oriented martensite, (re)orientation of martensite variants, minor loops, latent heat effects, and tension–compression asymmetry based on the Eulerian logarithmic strain and the corotational logarithmic objective rate. It further accounts for smooth thermomechanical response; temperature dependence of the critical force required for (re)orientation, temperature, and load dependence of the hysteresis width; and asymmetry between forward and reverse phase transformation, and it is flexible enough to address the deformation response in the concurrent presence of several phases, i.e., when austenite, self-accommodated, and oriented martensite co-exist in the microstructure. The ability of the proposed model to describe the aforementioned deformation response characteristics of SMAs under multiaxial, thermomechanical, and nonproportional loading relies on the set of three independent internal variables, i.e., the average volume fraction of martensite variants, their preferred direction, and the magnitude of the induced inelastic strain, which further allow for an implicit description of a fourth internal variable, the volume fraction of oriented as opposed to self-accommodated martensite. The calibration of the model and its numerical implementation in an efficient scheme are presented. The model is validated against experimental results associated with complex thermomechanical paths, including tension/compression/torsion experiments, and the efficiency of its numerical implementation is verified with simulations of the response of a biomedical superelastic SMA stent and an SMA spring actuator.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3