Shear Layer Driven Acoustic Modes in a Cylindrical Cavity

Author:

Stephens David B.1,Verdugo Francisco R.2,Bennett Gareth J.3

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44070

2. Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi Roma Tre, Via della Vasca navale, Rome 79 - 00146, Italy

3. Assistant Professor Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin 2, Ireland e-mail:

Abstract

This paper describes the interior acoustic pressure of a cylindrical cavity driven by a shear layer. Existing cavity flow literature is generally focused on rectangular cavities, where the resonance is either longitudinal or the result of excited depth modes inside the cavity. The design of the present circular cavity is such that azimuthal duct modes can be excited in various combinations with depth modes depending on free stream velocity. An acoustic simulation of the system was used to identify the modes as a function of frequency when the system is driven by an acoustic point source. With appropriate manipulation of the free stream flow, abrupt mode switching and mode oscillation were both observed, and a condition with a dominant azimuthal mode was found. The strength of the lock-on was documented for the various resonance conditions, and the effects of the cavity opening size and location were studied.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3