Experimental Validation of a Hybrid Electrostrictive Hydraulic Actuator Analysis

Author:

Chaudhuri Anirban12,Wereley Norman M.32

Affiliation:

1. Mem. ASME

2. Department of Aerospace Engineering, University of Maryland, College Park, MD 20742

3. Fellow ASME

Abstract

The basic operation of smart material-based hybrid electrohydraulic actuators involves high frequency bidirectional length change in an active material stack (or rod) that is converted to unidirectional motion of a hydraulic fluid by a set of valves. In this study, we present the design and measured performance of a compact hybrid actuation system driven by the single-crystal electrostrictive material PMN-32%PT. The active material was actuated at different frequencies with variations in the applied voltage, fluid bias pressure, and external load to study the effects on output velocity. The maximum actuator velocity was 330 mm/s and the corresponding flow rate was 42.5 cc/s; the blocked force of the actuator was 63 N. The results of the experiments are presented and compared with simulation data to validate a nonlinear time-domain model. Linearized equations were used to represent the active material while the inertia, viscous losses, and compressibility of the fluid were included using differential equations. Factors affecting system performance are identified and the inclusion of fluid inertia in the model is also justified.

Publisher

ASME International

Subject

General Engineering

Reference56 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3