PEM Based Sensitivity Analysis for Acoustic Radiation Problems of Random Responses

Author:

Liu Baoshan1,Zhao Guozhong1,Li Alex2

Affiliation:

1. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, P.R. China

2. Laboratory of Mechanics, Materials and Structures, University of Reims Champagne Ardenne, Rue des Craye’res BP135, 51687 Reims, France

Abstract

A new effective method for computing the acoustic radiation and its sensitivity analysis of a structure subjected to stochastic excitation is presented. Previous work in the area of structural and acoustic sensitivity analysis systems was mostly focused on the deterministic excitation. New methods are developed to account for stochastic excitation. The structural-acoustic response is calculated using finite element method and boundary element method combined with stochastic analysis techniques. An accurate and highly efficient algorithm series for structural stationary random response analysis, pseudo-excitation method (PEM), is extended to acoustic random analysis in this paper, which was used to calculate structural random analysis in the past. So the acoustic radiation problems of random responses are transformed to the structural-acoustic harmonic analyses. This is a time-saving progress in comparison with traditional method. Based on the PEM, the acoustic radiation sensitivities of the structure are developed in emphasis that are transformed to harmonic sensitivity analyses. They are validated by comparing with the results of finite difference sensitivity method. Numerical examples are given to demonstrate the effectiveness of the methods and the program.

Publisher

ASME International

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3