Frequency Response Characteristics of Parametrically Excited System

Author:

Han Qinkai1,Wang Jianjun1,Li Qihan1

Affiliation:

1. School of Jet Propulsion, Bei Hang University, Beijing 100191, China

Abstract

The frequency response characteristic of a general time-invariant system has been extensively analyzed in literature. However, it has not gained sufficient attentions in the parametrically excited system. In fact, due to the parametric excitation, the frequency response of time-periodic system differs distinctly from that of the time-invariant system. Utilizing Sylvester’s theorem and Fourier series expansion method, commonly used in the spectral decomposition for matrix, the frequency response functions (FRFs) of a single-degree-of-freedom (SDOF) parametrically excited system are derived briefly in the paper. The external resonant condition for the system is obtained by analyzing the specific expressions of FRFs. Then, a spur-gear-pair with periodically time-varying mesh stiffness is selected as an example to simulate the frequency response characteristics of parametric system. The effects of parametric stability, periodic mesh stiffness parameters (mesh frequency and contact ratio), and damping are considered in the simulation. It is shown from both theoretical and simulation results that the frequency response of parametric system has the following properties: there are multiple FRFs even for a SDOF periodic system as the forced response contains many frequency components and each FRF is corresponding to a certain response spectrum; the system has multiple external resonances. Besides the resonance caused by the external driving frequency equals to the natural frequency, the system will also be external resonant if external frequency meets the combination of natural frequency and parametric frequency. When the system is in external resonant state, the dominant frequency component in the response is the natural frequency; damping makes the peak values of FRFs drop evidently while it has almost no impact on the FRFs in nonresonant regions.

Publisher

ASME International

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter Identification Method for a Periodic Time-Varying System Using a Block-Pulse Function;Aerospace;2022-10-17

2. Vibration analysis of the power loom;Materials Today: Proceedings;2021

3. Free response approach in a parametric system;Mechanical Systems and Signal Processing;2017-07

4. Dynamic analysis of parametrically excited system under uncertainties and multi-frequency excitations;Mechanical Systems and Signal Processing;2016-05

5. Active control of parametrically excited systems;Journal of Intelligent Material Systems and Structures;2015-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3