Mechanical Enhancement of Graded Nanoporous Structure

Author:

He Lijie1,Abdolrahim Niaz2

Affiliation:

1. Hopeman Engineering Bldg Rochester, NY 14611

2. Hopeman Engineering Bldg, University of Rochester Rochester, NY 14611

Abstract

Abstract Inspired by the development of strong and ductile composite and gradient materials over the past decade, here we report the investigation of a graded nanoporous (NP) structure utilizing molecular dynamics simulations. The structure is generated by inducing a gradient scaling parameter in a Gaussian random field model. It has a large ligament/pore size toward the core and a small ligament/pore size toward the surface. The redistribution of stress and strain under tensile loading is then scrutinized and compared between the functional graded NP structure and two conventional NP structures with identical relative density but constant ligament size. During loading, the thick ligaments in the gradient structure yield at high stress, leading to the entire structure's high mechanical strength. The thin ligaments help the structure accommodate significant plastic strain by promoting uniform deformation. Both parts of the gradient structure worked collectively and resulted in the structure exhibiting a synergy of excellent strength and good deformability.

Funder

Division of Materials Research

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3