Deep Learning for Continuous-Time Leader Synchronization in Graphical Games Using Sampling and Deep Neural Networks

Author:

Zhang Da1,Anwar Junaid2,Rizvi Syed Ali Asad2,Wei Yusheng1

Affiliation:

1. University of North Texas Department of Electrical Engineering, , Denton, TX 76203

2. Tennessee Technological University Department of Electrical and Computer Engineering, , Cookeville, TN 38505

Abstract

Abstract We propose a novel deep learning-based approach for the problem of continuous-time leader synchronization in graphical games on large networks. The problem setup is to deploy a distributed and coordinated swarm to track the trajectory of a leader while minimizing local neighborhood tracking error and control costs for each agent. The goal of our work is to develop optimal control policies for continuous-time leader synchronization in graphical games using deep neural networks. We discretize the agents model using sampling to facilitate the modification of gradient descent methods for learning optimal control policies. The distributed swarm is deployed for a certain amount of time while keeping the control input of each agent constant during each sampling period. After collecting state and input data at each sampling time during one iteration, we update the weights of a deep neural network for each agent using collected data to minimize a loss function that characterizes the agents' local neighborhood tracking error and the control cost. A modified gradient descent method is presented to overcome existing limitations. The performance of the proposed method is compared with two reinforcement learning-based methods in terms of robustness to initial neural network weights and initial local neighborhood tracking errors and the scalability to networks with a large number of agents. Our approach has been shown to achieve superior performance compared with the other two methods.

Publisher

ASME International

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3