Affiliation:
1. Department of Energy and Mineral Engineering, Pennsylvania State University , University Park, PA 16802
Abstract
Abstract
Experimental toxicology studies for the purposes of setting occupational exposure limits for aerosols have drawbacks including excessive time and cost which could be overcome or limited by the development of computational approaches. A quantitative, analytical relationship between the characteristics of emerging nanomaterials and related in vivo toxicity can be utilized to better assist in the subsequent mitigation of exposure toxicity by design. Predictive toxicity models can be used to categorize and define exposure limitations for emerging nanomaterials. Model-based no-observed-adverse-effect-level (NOAEL) predictions were derived for toxicologically distinct nanomaterial clusters, referred to as model-predicted no observed adverse effect levels (MP-NOAELs). The lowest range of MP-NOAELs for the polymorphonuclear neutrophil (PMN) response observed by carbon nanotubes (CNTs) was found to be 21–35 μg/kg (cluster “A”), indicating that the CNT belonging to cluster A showed the earliest signs of adverse effects. Only 25% of the MP-NOAEL values for the CNTs can be quantitatively defined at present. The lowest observed MP-NOAEL range for the metal oxide nanoparticles was Cobalt oxide nanoparticles (cluster III) for the macrophage (MAC) response at 54–189 μg/kg. Nearly 50% of the derived MP-NOAEL values for the metal oxide nanoparticles can be quantitatively defined based on current data. A sensitivity analysis of the MP-NOAEL derivation highlighted the dependency of the process on the shape and type of the fitted dose-response model, its parameters, dose selection and spacing, and the sample size analyzed.
Funder
National Institute for Occupational Safety and Health
National Science Foundation
Subject
Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献