Fit As a Diagnostic Tool: An Analytic Review of Approaches to Measure Correspondence Between Technical and Organizational Architectures

Author:

Gralla Erica1,Joseph Nikolai1,Szajnfarber Zoe1

Affiliation:

1. The George Washington University Department of Engineering Management, and Systems Engineering, , Washington, DC 20052

Abstract

AbstractStandardized design approaches such as those embodied by concurrent design facilities have many benefits, such as increased efficiency of the design process, but may also have hidden costs. Specifically, when their standardized organizational decomposition is a poor fit for the particular design problem, important design trades might be missed or poor decisions made. Before we can understand how this lack of fit impacts the design process, we must be able to empirically observe and measure it. To that end, this paper identifies measures of “fit” from the literature along with attributes likely to impact design process performance, then evaluates the measures to determine how well the measures can detect and diagnose potential issues. The results provide comparative insights into the capabilities of existing fit measures, and also build guidance for how the systems engineering and design community can use insights from the “fit” literature to inform process improvement.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference57 articles.

1. JPL Innovation Foundry;Sherwood;Acta Astron.,2013

2. Concurrent Design Facility at the Space Center EPFL;Ivanov,2013

3. The ESA/ESTEC Concurrent Design Facility;Bandecchi,2000

4. Design Rules

5. Architecture, Constraints, and Behavior;Doyle;Proc. Natl. Acad. Sci. U. S. A.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3