Flow and Stability of Rivulets on Heated Surfaces With Topography

Author:

Gambaryan-Roisman Tatiana1,Stephan Peter1

Affiliation:

1. Chair of Technical Thermodynamics, Technische Universität Darmstadt, Petersenstrasse 30, 64287 Darmstadt, Germany

Abstract

Surfaces with topography promote rivulet flow patterns, which are characterized by a high cumulative length of contact lines. This property is very advantageous for evaporators and cooling devices, since the local evaporation rate in the vicinity of contact lines (microregion evaporation) is extremely high. The liquid flow in rivulets is subject to different kinds of instabilities, including the long-wave falling film instability (or the kinematic-wave instability), the capillary instability, and the thermocapillary instability. These instabilities may lead to the development of wavy flow patterns and to the rivulet rupture. We develop a model describing the hydrodynamics and heat transfer in flowing rivulets on surfaces with topography under the action of gravity, surface tension, and thermocapillarity. The contact line behavior is modeled using the disjoining pressure concept. The perfectly wetting case is described using the usual h−3 disjoining pressure. The partially wetting case is modeled using the integrated 6–12 Lennard-Jones potential. The developed model is used for investigating the effects of the surface topography, gravity, thermocapillarity, and the contact line behavior on the rivulet stability. We show that the long-wave thermocapillary instability may lead to splitting of the rivulet into droplets or into several rivulets, depending on the Marangoni number and on the rivulet geometry. The kinematic-wave instability may be completely suppressed in the case of the rivulet flow in a groove.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference42 articles.

1. Moving Contact Lines and Rivulet Instabilities. Part 1: The Static Rivulet;Davis;J. Fluid Mech.

2. Criteria for the Break-Up of Thin Liquid Layers Flowing Isothermally Over Solid Surfaces;Hartley;Int. J. Heat Mass Transfer

3. A Mechanism for Rivulet Formation in Heated Falling Films;Joo;J. Fluid Mech.

4. Analysis of Falling Film Evaporation on Grooved Surfaces;Gambaryan-Roisman;J. Enhanced Heat Transfer

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3