Effect of Area Ratio on the Performance of a 5.5:1 Pressure Ratio Centrifugal Impeller

Author:

Schumann L. F.1,Clark D. A.1,Wood J. R.2

Affiliation:

1. Propulsion Directorate, U.S. Army Aviation Research and Technology Activity—AVSCOM, Lewis Research Center, Cleveland, OH 44135

2. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/s was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested. The data also indicated that the impeller would probably separate at design area ratios greater than 2.748. An analysis was performed with a quasi-three-dimensional inviscid computer code which confirmed that a minimum velocity ratio was attained near this area ratio thus indicating separation. These data can be used to verify impeller flow models which attempt to account for very high diffusion and possible separation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and Numerical Investigation of Clearance Effects in a Transonic Centrifugal Compressor;Journal of Propulsion and Power;2022-05

2. Design Considerations for Tip Clearance Sensitivity of Centrifugal Compressors in Aeroengines;Journal of Propulsion and Power;2019-05

3. Performance impact of impeller blade trimming on centrifugal compressors;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2014-09-08

4. Performance analysis and improvement of a high flow coefficient centrifugal compressor;Science China Technological Sciences;2014-05-09

5. Effect of impeller blade trimming on the performance of a 5.5:1 pressure ratio centrifugal compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2014-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3