Affiliation:
1. Mem. ASME
2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
3. Fellow ASME
Abstract
Rigorous scale-dependent bounds on the constitutive response of random polycrystalline aggregates are obtained by setting up two stochastic boundary value problems (Dirichlet and Neumann type) consistent with the Hill condition. This methodology enables one to estimate the size of the representative volume element (RVE), the cornerstone of the separation of scales in continuum mechanics. The method is illustrated on the single-phase and multiphase aggregates, and, generally, it turns out that the RVE is attained with about eight crystals in a 3D system. From a thermodynamic perspective, one can also estimate the scale dependencies of the dissipation potential in the velocity space and its complementary potential in the force space. The viscoplastic material, being a purely dissipative material, is ideally suited for this purpose.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献