Understanding of Diesel Engine Combustion Process via Mathematical Modeling: Part 2 — Results

Author:

Danov Stanislav N.1,Gupta Ashwani K.1

Affiliation:

1. University of Maryland

Abstract

Abstract In the companion Part 1 of this two part series paper a mathematical model of combustion process in a diesel engine was presented having both premixed and diffusion flame. The combustion of fuel vaporized during the self-ignition delay period is modeled according to the conditions of premixed flame. A kinetic differential equation has been created for modeling this kind of combustion. The combustion of fuel during the injection process is modeled according to the theory of diffusion flames. This process is strongly influenced by processes of fuel injection, vaporization and diffusion. The atomization process is taken into account by means of the Sauter mean diameter (SMD) of fuel droplets. The instantaneous vaporization rate is defined by the current value of temperature, pressure, concentration of fuel vapors and the mean fuel droplet size in terms of the SMD. The mathematical model includes differential equations describing the processes of fuel injection, vaporization, heat transfer and combustion in both premixed and diffusion flame that occurs in the engine cylinder. The above equations are solved together with the differential equation of the first law of thermodynamics expressing the energy conversion process in the cylinder of diesel engine. The fourth-order Runge-Kutta method is applied for obtaining numerical solution of the system of differential equations. The model is calibrated and validated for two different turbocharged diesel engines — 8DKRN 74/160 and Sulzer-6RLB-66. The analysis is performed on a PC using FORTRAN 90. The comparison between the experimental data and numerical results shows very good agreement. Numerical experiments have been carried out for examining the combustion behavior in the cylinder of a marine DI diesel engine Sulzer 6RLB-66 having a cylinder diameter of 0.66 m bore and stroke of 1.4 m. The influence of the quality of fuel atomization process, estimated via the SMD, on the fuel vaporization rate and overall combustion rate has been evaluated. This influence is quantified and the results show very strong influence of SMD on the vaporization and combustion process, both with respect to the maximum rates and the duration of the processes. In addition numerical experiments have been carried out for determining the effect of duration of fuel injection and the beginning of fuel injection (degrees of crank angle rotation before TDC) on subsequent combustion parameters and integral indicator parameters of the engine. These results show that ratio: “amount of fuel burnt under the premixed flame conditions / amount of fuel burnt under diffusion flame conditions” for one cycle varies significantly with the change in fuel injection duration. The model provides both the instantaneous values of engine parameters in the cylinder (i.e., temperature, pressure, current air-gas mixture composition, heat transfer rate, thermo-physical properties of the air-gas mixture, etc.) and integral indicator engine parameters (mean indicated pressure, specific fuel consumption, efficiency, etc.). A comparison between experimental and modeling data show gratifying results.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3