Active Stiffeners for Vibration Control of a Circular Plate Structure: Analytical and Experimental Investigations

Author:

Philen Michael K.12,Wang K. W.2

Affiliation:

1. Eastman Kodak Fellow

2. Structural Dynamics and Controls Lab, The Pennsylvania State University, University Park, PA 16802

Abstract

Space-based adaptive optic systems have gained considerable attention within the past couple of decades. Achieving the increasingly stringent performance requirements for these systems is greatly hindered by strict weight restrictions, size limitations, and subjected hostile environments. There has been considerable attention in developing lightweight adaptive optics where piezoelectric sheet actuators are attached on the back of optical mirrors to achieve a high precision surface shape with minimum additional weight. Vibration control of such large flexible space structures is continually challenging to engineers due to the large number of actuators and sensors and the large number of vibration modes within the operational bandwidth. For these structures, any disturbed modes are likely to remain vibrating for an extended period of time due to the small amount of damping available. As a result, controller spillover should be minimized as much as possible to avoid exciting the residual modes. In recent investigations of circular plate shape control by [Philen and Wang, Int. Soc. Opt. Eng. 4327, pp. 709–719]. It was demonstrated that directional decoupling of the two-dimensional actuator (meaning that the actuation in one of the two directions is eliminated) improves the system performance when correcting for the lower order Zernike static deformations. This directional decoupling effect can be achieved through an active stiffener (AS) design. In this research, analytical and experimental efforts are carried out to examine the effect of the active stiffener actuators in reducing the controller spillover through the stiffeners’ decoupling characteristics. It is shown that significant reductions in controller spillover can be achieved in systems using the active stiffener actuators when compared to systems having direct attached (DA) actuators, thus resulting in improved vibration control performance. The experimental results verify the analytical predictions and clearly demonstrate the merit of the active stiffener concept.

Publisher

ASME International

Subject

General Engineering

Reference17 articles.

1. Shape Control of Circular Plate with Piezoelectric Sheet Actuators;Philen;Proc. SPIE

2. Optimal Actuator Placement on an Active Reflector Using a Modified Simulated Annealing Technique;Kuo

3. Adaptive Lightweight Mirrors for the Correction of Self-Weight and Thermal Deformations;Liu;ASME Adaptive Structures Materials Sys.

4. Control of Thermal Deformations of Spherical Mirror Segment;Kapania;J. Spacecr. Rockets

5. Active Stiffener Actuators For High-Precision Shape Control Of Circular Plate Structure;Philen;AIAA J.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3