Flow Field Measurements on a Large Scale Turbine Cascade With Leading Edge Film Cooling by Two Rows of Holes

Author:

Ardey Sabine1,Fottner Leonhard1

Affiliation:

1. Universität der Bundeswehr München, Neubiberg, Germany

Abstract

To increase the understanding of the aerodynamic processes dominating the flow field of turbine bladings with leading edge film cooling, isothermal investigations were carried out on a large scale high pressure turbine cascade. Near the stagnation point the blades are equipped with one row of film cooling holes on the suction side and one on the pressure side. Blowing ratio, turbulence intensity, Mach number, and Reynolds number are set to values typically found in modern gas turbines. Experimental data of the cascade flow were obtained by pneumatic probes and static pressure tappings. The flow field was visualized by Schlieren and oil flow techniques. For detailed investigations near the blowing holes the Laser Transit Velocimetry and the three dimensional Hot Wire Anemometry were used. The flow field measurements in the near hole region of the suction side show the typical kidney shaped vortex pair. A local suction peak on the pressure side causes a large recirculation area behind the holes on the pressure side and induces separation bubbles in between the pressure side holes. This leads to the generation of two pairs of vortices: The kidney-vortex is located on top of a second vortex pair and a trough flow that fills up the deficit of the recirculation. Thus the film cooling air is detached from the pressure side surface. In addition to the mean flow vectors Reynolds stress components are a good means to judge the propagation of the jet. In spite of the complex flow pattern occurring on each single jet, the surveyed loss-increase due to the leading edge blowing can be predicted by the mixing layer model.

Publisher

American Society of Mechanical Engineers

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3