Two-Step Process Identification With Correlation Analysis and Least-Squares Parameter Estimation

Author:

Isermann R.1,Bauer U.1

Affiliation:

1. University of Stuttgart, Stuttgart, West Germany

Abstract

An identification method is described which first identifies a linear nonparametric model (crosscorrelation function, impulse response) by correlation analysis and then estimates the parameters of a parametric model (discrete transfer function) and also includes a method for the detection of the model order and the time delay. The performance, the computational expense and the overall reliability of this method is compared with five other identification methods. This two-step identification method, which can be applied off-line or on-line, is especially suited to identification by process computers, since it has the properties: Little a priori knowledge about the structure of the process model; very short computation time; small computer storage; no initial values of matrices and parameters are necessary and no divergence is possible for the on-line version. Results of an on-line identification of an industrial process with a process computer are shown.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recursive Algorithm of Bias Compensated Weighted Least Squares Method;Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications;2019-07-31

2. Identification of Errors-In-Variables Models Based on Bias Compensation of Weighted Least Squares Estimator;Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications;2018-06-15

3. Closed-Loop System Identification Based on Data Correlation;Journal of Dynamic Systems, Measurement, and Control;2013-10-18

4. Least Squares Parameter Estimation for Dynamic Processes;Identification of Dynamic Systems;2010-11-04

5. Fault detection using interval LPV models in an open-flow canal;Control Engineering Practice;2010-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3