Design and Kinematics Modeling of a Novel 3-DOF Monolithic Manipulator Featuring Improved Scott-Russell Mechanisms

Author:

Qin Yanding1,Shirinzadeh Bijan2,Zhang Dawei3,Tian Yanling4

Affiliation:

1. Tianjin Key Laboratory of Intelligent Robotics Nankai University, Tianjin 300071, China e-mail:

2. Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton VIC 3800, Australia e-mail: bijan.shirinzadeh@monash.edu

3. e-mail:

4. e-mail:  Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China

Abstract

This paper proposes the design of a novel 3-DOF monolithic manipulator. This manipulator is capable of performing planar manipulations with three kinematically coupled DOFs, i.e., the translations in the X and Y axes and the rotation about the Z axis. An improved Scott-Russell (ISR) mechanism is utilized to magnify the displacement of the piezoelectric actuator (PEA). Unlike the SR mechanism, a set of leaf parallelograms is incorporated into the drive point of the ISR mechanism as a prismatic joint. As a result, the linearity of motion and stability are improved. With circular flexure hinges being treated as revolute joints, the forward kinematics and inverse kinematics of the 3-DOF manipulator are analytically derived. Computational analyses are performed to validate the established kinematics models. Due to the unwanted compliance of the flexure hinges, the actual displacement amplification ratio of the ISR mechanism is smaller than its theoretical value. This is the main cause of the discrepancies between the analytical and computational results. The reachable workspace and the static/dynamic characteristics of the 3-DOF manipulator are also analyzed.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3