Dynamics Modeling-Based Optimization of Process Parameters in Face Milling of Workpieces With Discontinuous Surfaces

Author:

Li Guilong12,Du Shichang12,Huang Delin12,Zhao Chen12,Deng Yafei12

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China

2. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Abstract

Abstract Face milling is widely used in machining processes, aimed at providing workpieces with high surface quality. The chatter generated in face milling could lead to tremendous damage to machine tools, poor machined surface quality, and loss of processing efficiency. Most related researches have been focused on the modeling of spindle dynamics and discretization algorithms for chatter prediction. However, few published articles have taken the geometric characteristics of workpieces into consideration, especially for workpieces with discontinuous surfaces in face milling, which leads to poor accuracy of chatter prediction as well as the waste of processing efficiency. To overcome this shortage, a novel dynamic model for the face milling process is built in this paper, considering the cutting insert engagement based on the geometric characteristics of the workpieces and the tool path. The stability lobe diagrams (SLDs) applicable to workpieces with discontinuous surfaces are constructed. A process parameter optimization model is developed to maximize the chatter-free processing efficiency of the face milling process. The sensitivity analysis is utilized to simplify the objective function, and the genetic algorithm is employed to solve the optimization model. The proposed approach is validated by an experimental case study of an engine block, improving the chatter-free material removal rate by 53.3% in comparison to the classic approach.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3