Affiliation:
1. Leishear Engineering, LLC, 205 Longleaf Court, Aiken, SC 29803
Abstract
Abstract
Most underground water main breaks can be stopped, since the technology is now available to evaluate water system piping failures and determine corrective actions. The problem is defined in terms of several variables: (1) Water hammer is the initiator of nearly all underground water main breaks. (2) In nonacidic soils, fatigue directly causes piping cracks. (3) In acidic soils, water hammer cracks the pipes, and crevice corrosion is accelerated at those crack sites. Additionally, those cracks serve as moisture sources to induce piping surface corrosion due to galvanic corrosion between the soil and the metallic pipe wall. Even so, some failures are solely due to corrosion. (4) Dynamic pipe stresses are significantly larger than stresses caused by static loading, i.e., hoop stresses and strains may be as much as four times the calculated static stress due to water hammer. (5) If dynamic stresses are not considered, calculations incorrectly conclude that water mains will not be damaged. (6) That is, water hammer calculations determine pressure surge magnitudes that are multiples of the operating pressures, where dynamic effects cause fatigue cracks due to the applied pressures and the number of cycles for those pressures to break water mains.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference25 articles.
1. NTSB Safety Recommendations, Anhydrous Ammonia Pipeline Accidents;NTSB,1974
2. NTSB Determines Probable Cause of Pipe Line Rupture in Bellingham Washington;NTSB,2002
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献