Development of Comprehensive Techniques for Coastal Site Characterisation: Integrated Palaeohydrogeological Approach for Development of Site Evolution Models

Author:

Amano Kenji1,Niizato Tadafumi1,Ota Kunio2,Lanyon Bill3,Alexander W. Russell4

Affiliation:

1. Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan

2. Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

3. Nagra, Wettingen, Switzerland

4. Bedrock Geosciences, Auenstein, Switzerland

Abstract

Radioactive waste repository designs consist of multiple safety barriers which include the waste form, the canister, the engineered barriers and the geosphere. It is widely considered that the three most important safety features provided by the geosphere are mechanical stability, favourable geochemical conditions and low groundwater flux. To guarantee that a repository site will provide such conditions for timescales of relevance to the safety assessment, any repository site characterisation has to not only define whether these features will function appropriately today, but also to assess if they will remain adequate up to several thousand to hundreds of thousand years into the future, depending on the repository type. The case study described here is focussed on the palaeohydrogeology of the coastal area around Horonobe in northern Hokkaido, Japan. Data from JAEA’s ongoing underground research laboratory project is being synthesised in a Site Descriptive Model (SDM) with new information from the collaborating research institutes to develop a Site Evolution Model (SEM), with the focus very much on changes in the Sea of Japan seaboard over the last few million years. This new conceptual model will then be used to assess the palaeohydrological evolution of the deep geosphere of coastal sites of Japan.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3