Heat and Mass Transfer in Planar Anode-Supported Solid Oxide Fuel Cells: Effects of Interconnect Fuel/Oxidant Channel Flow Cross Section

Author:

Manglik Raj M.1,Magar Yogesh N.1

Affiliation:

1. Thermal-Fluids and Thermal Processing Laboratory, Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 e-mail:

Abstract

Heat and mass transfer in a planar anode-supported solid oxide fuel cell (SOFC) module, with bipolar-plate interconnect flow channels of different shapes are computationally simulated. The electrochemistry is modeled by uniform supply of volatile species (moist hydrogen) and oxidant (air) to the electrolyte surface with constant reaction rate via interconnect channels of rectangular, trapezoidal, and triangular cross sections. The governing three-dimensional equations for fluid mass, momentum, energy, and species transport, along with those for electrochemical kinetics, where the homogeneous porous-layer flow is in thermal equilibrium with the solid matrix, are coupled with the electrochemical reaction rate to properly account for the heat and mass transfer across flow-ducts and electrode-interfaces. The results highlight effects of interconnect duct shapes on lateral temperature and species distributions as well as the attendant frictional losses and heat transfer coefficients. It is seen that a relatively shallow rectangular duct offers better heat and mass transfer performance to affect improved thermal management of a planar SOFC.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference68 articles.

1. Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability;J. Power Sources,2008

2. Solid Oxide Fuel Cells: Fundamental Aspects and Prospects;Electrochim. Acta,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3